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ABSTRACT

The satisfactory numerical solution of the equations of fluid dynamics applicable to atmospheric and oceanic
problems characteristically requires a high degree of computational stability and accurate conservation of certain
statistical moments. Methods for satisfying these requirements are described for various systems of equations
typical of low Mach number fluid dynamies systems, and are investigated in detail as applied to the two-dimensional,
inertial-plane equation for conservation of vorticity in a frictionless non-divergent fluid.

The conservation and stability properties of the spatial differencing methods devised by A. Arakawa are in-
vestigated by means of spectral analysis of the stream function into finite Fourier modes. Any of two classes of
linear and quadratic conserving schemes are shown to eliminate the non-linear instability discussed by Phillips,
although the “aliasing’ error remains. Stability related to the time derivative term is investigated through analytic
and numerieal solutions of a limited-component system of finite spectral equations, equivalent to one of the guadratic
conserving difference schemes, and a number of first and second order representations of the time derivative term are
tested separately. The commonly used midpoint rule (“leapfrog”) method is shown to be unstable in some cases.
Of the stable methods, that devised by Miyakoda and the second order Adams-Bashforth method exhibit satisfactory
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accuracy, while those due to Matsuno, and Lax and Wendroff are much less accurate.
A systematic derivation of the Arakawa difference schemes is contained in an appendix, which shows their unique
satisfaction of certain prescribed accuracy and conservation properties.

1. INTRODUCTION

In the last 10 years numerical methods have been used
with increasing frequency and success for solving non-
linear initial-value boundary-value problems in fluid
dynamics. The availability of high-speed electronic com-
puters has probably been the major factor in the success
attained, since many of the problems had been properly
posed for many years. Much of the numerical analysis
necessary to satisfactorily formulate these problems for
computational solutions also dates back to pre-electronic
eras. In recent years, however, it has become clear that
methods of numerical formulation must, to some extent,
be tailored to the nature of the expected solution. Thus in
spite of the almost universal application of the Navier-
Stokes equations, numerical solutions involving shock
waves should evidently be obtained in a rather different
manner from those pertaining to, for example, unsteady
thermal convection. The finite difference methods devel-
oped at the Courant Institute (Courant, Isaacson, and
Rees [5]; Lax and Wendroff [13]; Richtmyer [21]) may be
quite appropriate for high Mach number problems involv-
ing a single energetic “‘event”. They often are severely
inadequate, however, when applied to an atmospheric
general circulation problem, in which accurate caleulation
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of the statistical parameters of a number of sequential,
and somewhat random, events is the primary requirement.
In general, atmospheric and oceanographic equations are
highly non-linear, and useful computation often requires
that momentum, energy, circulation, heat, and other
variables be created, transformed, and dissipated through
several energetic cycles with a minimum of consistent,
ie. non-random, computational error. Meteorologists
can ordinarily tolerate random error magnitudes up to
the error limit of the rather poorly known initial con-
ditions. Few competent meterologists expect to be able
to make detailed daily weather forecasts, by computer or
otherwise, six months in advance, but a numerical cal-
culation in which 10 percent of the mass of the atmosphere
is lost, through computational error during this period may
be highly suspect in its other statistical conclusions. We
thus may summarize the special requirements of many
geophysical fluid calculations to be accurate conservation
of linear and quadratic integral properties and great
computational stability, perhaps to the exclusion of opti-
mum accuracy in shape and phase representation. Some-
what the same requirements might be expected to prevail
in some other low Mach number problems of the more
classical type, such as the Karman vortex street calcu-
lations recently performed by Fromm and Harlow [9].
By contrast, however, operational weather forecasting
models seem to require essentially the opposite properties.
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It is well known that finite representation of fluid
motions by means of truncated Fourier spectra allows
high accuracy, stability, and conservation of all appropriate
quantities, but at great cost in computational effort. The
number of multiplications required to compute non-
linear interactions increases as the square of the number
of components, as compared to a linear increase in finite
difference formulations. Spatial differencing formulas
recently developed by Arakawa [1], and Fromm (8]
appear to offer most of the advantages of the spectral
methods within a grid point formulation. These for-
mulas have the property of requiring conservation of
linear and quadratic quantities within the advection
terms and appear, to a certain extent, to insure compu-
tational stability. Although they have already been
used successfully in several different problems (Lilly [14],
Bryan [2), Mintz and Arakawa [17], Fromm and Harlow
[9]), very little is known of the general properties of these
methods. This study is an attempt to compare different
methods, and assess their stability in a systematic way.

In section 2, linear and quadratic conserving spatial
differencing schemes are exhibited for two systems of
hydrodynamic equations which typify many systems
arising in meteorological and oceanographic problems.
In section 3 the schemes appropriate for one of the hydro-
dynamic systems, consisting simply of a {rictionless
barotropic vorticity equation, are examined and com-
pared in some detail by means of analysis into finite
Fourier spectral equations. It is shown that the quad-
ratic conserving schemes allow construction of one or
more Liapunov functions, the existence of which assures
stability for the continuous time equations. Section 4
contains examples of limited component sets, similar to
those used by Phillips {19] and Lorenz [15], which more
simply illustrate the effect of application of the con-
serving schemes.

In sections 5 and 6 methods of numerical approxima-
tion of the time derivative are compared through analytic
and numerical solutions of one of the limited component
Fourier spectral sets previously derived. The known
tendency toward instability of the midpoint rule, or
“leapirog,” method is illustrated and partially explained.
Other methods considered are mostly stable but show
widely varying accuracy.

A systematic derivation of the Arakawa spatial differ-
ence scheme and related linear-quadratic conserving
schemes for the barotropic vorticity equation is presented
in the appendix.

2. SPATIAL DIFFERENCE SCHEMES

Perhaps the simplest flow of general interest in meteor-
ology and oceanography is that of a frictionless incompres-
sible homogeneous fluid, constrained to two-dimensional
motion between fixed parallel upper and lower boundaries.
The equations of motion reduce to an equation for con-
servation of the vorticity component perpendicular to the
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boundaries, that is

of _ OYOr, Oy Of
gg—-*J(%s‘)—“a—w@ oy o3 (2.1)
where ¢ is the streamfunction, {==0%/0z?4-0%/dy?, and
J symbolizes the two-dimensional Jacobian. From this
equation it is easily shown that kinetic energy, (V¢)¥2,
and any function of ¢ are conserved in the flow; that is,
that their integrals over a fixed region in space can only
change by transport through the boundaries of the region.

It is unlikely that any finite representation of the
Jacobian can conform to all these integral conditions, but
Arakawa [1] has developed a class of second-order finite
difference schemes which conserve the vorticity and one
or both of the quadratic quantities, kinetic energy and
squared vorticity. The schemes are conveniently de-
scribed by use of three fundamental formulas for the
Jacobian, Ji, J,, and J;, as follows:

J 1= z@zau}y - 81/;‘1/&}2
Jo=0,(v5,8") —8,(vo,c")
Jy=—5,(¢c0,8") +6,(c0.8") .

2.2)

The notation, used in a previous paper (Lilly [14]), is
defined by the following identities:

8P (@)=r [F(oc-}-A—; —F(x—%)]»

) =y [F (z+42—”>+F (x—%)]

8,7 (@) = 6: F (x =§i—z [F(a-+ar)—F(z—az)] (2.3)

where F(z) is any function of the discrete variable z
and Az is the grid interval. These formulas are derived
in the appendix and it is shown there that JJ, conserves
vorticity, J. conserves vorticity and its square, J3 con-
serves vorticity and kinetic energy, and the combination
Ja=(J1+Jo+J3) /3 conserves all three. It is shown in the
appendix that J, is unique in its properties within a certain
class of approximations, but that .J;, J,, and J; are not,
since any linear combination of J, with either of the others
retains the latter’s properties.

The scheme designated oJ; is often called the ‘‘usual”
difference scheme and was used in early numerical weather
forecasting (Charney, Fjgrtoft, and Von Neumann (3]).
Phillips [19] showed that the scheme is unconditionally
unstable to disturbances in certain high [requency modes.
J; was used by Bryan [2] in ocean current calculations and
by Lilly [14] and Deardorfl [6] in convective problems.
Fromm [8] developed J; and (J;+J3)/2 independently for
use in computational simulation of flow past a cylinder,
Mintz and Arakawa [17] used J4 in general eirculation
calculations. In these applications the use of the quad-
ratic conserving forms reportedly eliminated or greatly
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reduced all tendencies toward computational instability.
In some cases, however, the difference method used for
approximating the fime derivative apparently led to a slow
instability of the inviscid equations.

If the upper boundary constraint in the previously dis-
cussed flow is replaced by a vanishing stress condition, the
two-dimensional equations may be written in a form which
is typical of many other geophysical fluid dynamies sys-
tems, including that of recent general circulation calcula-
tions by Smagorinsky [23]. If A is the height of the free
surface, then the frictionless two-dimensional equations of
fluid momentum and continuity are:

h

2 (h)+2- (o) +— (o) +-gh 20 2.4)

9 oh
o )+ (huv)+~ (1) +-gh 5 = (2.5)
S )+ () =0 (26

ot

The mass per unit area,ph, and total energy per unit area,
p(hu*+hv*+gh?) /2, are conserved in this set (density, p,
is a constant), as are the momentum components except
for boundary pressure forces.

A system of finite difference equations which preserves
the above conservative properties is the following:

aa—t (Fu) 40, (hw ) +6,(H0 @) +gh s.h=0  (2.7)

%(E”v)+au(7ﬁ5’”)+51,(77v"5")+gi‘»”6yh=0 (2.8)

O e (Fu)+o,(B") =0. (2.9)
Verification of the energy conservation property can be
readily obtained by methods outlined in a previous paper
(Lilly [14]). Upon taking the finite difference curl of
(2.7) and (2.8) in the case of £ constant, the advective
terms become identical to J; in (2.2). Since the square
of the potential vorticity per unit area, p¢*/h, is also
conserved in (2.4)—(2.6), finite difference forms similarly
related to J, and J, should also exist for this system,
but the possibility has not been explored. It may be
noted that h, u, and » in (2.7)—(2.9) are defined at dif-
ferent locations in the mesh. This is not necessary for
the conservation properties, since a closely related
system can be devised in which all variables are located
at the same points. The above system minimizes trunca-
tion error in the terms which contribute to linear gravita-
tional oscillations.

In most practical or theoretical initial value problems
to which numerical methods are applied, the equations,
variables, or coordinates exhibit greater complexities
than are presented in (2.1) or (2.7)—(2.9). In most
cases it appears that the difference equations can be
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altered and/or added to in a fairly mechanical manner
to preserve the desired integral properties, as with the
examples given by Arakawa, Bryan, and Lilly. Most
numerical forecasting models, including primitive equa-
tions models in which a condition of two- or three-
dimensional non-divergence exists, can be treated with
schemes closely related to those described for (2.1).
The compressible Navier-Stokes equations and the equa-
tions of large-scale motion allowing external gravity
waves are of the form of (2.4)-(2.6). Conservative
equations of a scalar, say T, can be written using either
the form of (J,+J3)/2, for incompressible flow, or the
following equivalent form appropriate to compressible
flow:

% WT) 40, (FuT) +6,(FoT)=0.  (2.10)
These forms conserve 77 or hT? respectively, within the
advection terms.

3. SPECTRAL ANALYSIS

The equations of motion in finite Fourier spectral
forms have been used both in diagnostic studies and in
simplified geophysical models. In this section we derive
and investigate the non-linear terms in spectral form
for the finite difference Jacobian expressions oJ;, Js, J5, and
Js above. The investigation shows that the truncation
errors involved in the finite difference spectra are of three
different types, only two of which are removable by in-
creasing the order of the difference equations. The third
type of error, commonly known as aliasing, is responsible
for a form of instability demonstrated by Phillips [19].

Although Phillips called it a nonlinear instability, Miya-
koda [18] (p. 175) showed that it can occur also in linear
equations with nonconstant coefficients. The unstable
behavior of this error is eliminated in the Arakawa dif-
ferencing schemes, by compensating triad interactions, as
in the analytic spectral equations. We may express the
stream function, vorticity, ete., as a series of complex ex-
ponential functions with vector wave number M=im-jn,
as follows:

— A im(M+R) 1
V=33 Aue 5 ¥ (3.0
where R=iz-+jy, im=+/—1 and the summation is over a
finite set of wave numbers.

Approximately following Lorenz [15], we write for the
vorticity

—3 M Ayen D=5 (MY, (32)
™M M

and obtain the analytic Jacobian in the vector product

form-

TW 0= 33 (k- MXM)IM [Hy by, (33)

or, in a symmetric form
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JW, =8 >3 (k- M XM )(MF— M Py by, (34)

Considering now the finite difference equations, we must
introduce certain substitutions for the wave numbers ap-
pearing in the derivative expressions. We expand the
notation defined in (2.3) to include the finite gradient
and Laplacian operators

CVF=i8,F +j5,F’
V=6, F+5,,F
—8,(5,F) +5,(5,F) (3.5)

and note that after operation on a complex exponent,
sines of the wave numbers appear, e.g.,

Veim™ - B) — § (M) imei™ M+ B (3.6)

where
S(M):l sin mAZ—] sin nA (3.7)

and |

VeimM - B — 4] S(M/2) 2™ B,

Although it is not essential to the analysis, we have as-
sumed that the grid is isotropic, so that A=Az=Ay. The
vector S(M) approaches M for small wave numbers, but
it obx}iously does not possess distributive properties, i.e.,

S(M,+M,) = S(M,) +S(M,).

We now may write the finite difference Jacobian ex-
pressions Jj, Js, and J; in spectral form as follows:

Ji=k-WXTi=2 35 K- [S(M')XSM")]
' MII 2 M/ 2
(I CE) } b 0

Jo=k - TX V) =2 > k-S(M'+-M"")

| M7, M

' AL N2 .

. x{S(M")S(I‘g ) +san[s (5[ Fratae
Jo=—k-TX(ETY)=—2 52 k-S(M'+M")

' (3.9)
£ ><{S(M”) s(%) +sa) S(“g)}wM&bM

i (3.10)

Finally, after summing the above three expressions we
may write the averaged form, J,, as

Ta= (D T T)3=5 3 k- (S(M)XS(M”")
M, M

2

HSM’+M)IX[S(M ") —S(M)]} { 'S<M2”>

B ‘S <1\2£>‘2}¢M‘//M (3.11)
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The conservation properties are demonstrable upon
consideration of the triad interactions obtained in forming
the energy and squared vorticity equations. Thus in
the product ¢_m-mrJs the complex exponential re-
duces to unity and the product has a nonvanishing
spatial integral proportional to the amplitude product
A_v-m AmAm»  multiplied by  the interaction
coefficient of (3.11). Upon cyelically transposing M’,
M, and —M’—M’"’ the three interaction coefficients
obtained sum to zero, proving kinetic energy conservation
within the triad. A similar result is obtained for the
products which lead to conservation of squared vorticity.
Jy and J; may respectively be shown to conserve squared
vorticity and kinetic energy alone. The spectral equa-
tions do not in themselves determine whether the non-
conserved properties grow or diminish, as that depends
on phase and amplitude conditions for a given case.

In comparing the finite expressions (3.8)—(3.11) with
the analytic Jacobian (3.3) or (3.4) one may segregate
the differences, or truncation errors, into three different
classes, here designated as first derivative errors, second
derivative errors, and aliasing errors. First derivative
errors are introduced by the approximation of M by S(M),
that is the replacement of wave numbers by their sines.
These errors are quantitatively present in all interactions,
and introduce a qualitative effect when two wave numbers,
M’ and M’/ are parallel. Equation (3.3) shows that,
for the analytic equations, the interaction coefficient
disappears and no new component is generated, but this
is not true for (3.8)—(3.11). These errcrs may be reduced
by using a higher order difference scheme, for which
S(M) is replaced by the Fourier sine series converging
toward M in the range frcm —#/A to #/A in each coordi-
nate direction. QOutside this range the series becomes
periodie, but the resulting error should be classified as
aliasing.

Second derivative errors occur in the approximation
to the factor M- M by 4]S(M/2)[2, associated with the
computation of vorticity from the stream function.
As with the first derivative errors they occur to some
extent in all interactions and also cause qualitative errors
in certain cases. Kquation (3.4) shows that no inter-
action should exist for wave numbers of equal magnitude,
that is with {M”:)M”). Again this property is not
accurately represented in the finite approximations, as
can be shown, for example, by choosing two components
with wave numbers m’A=3#/5, n’A=4x/5 and m' A=,
and n’’A=0. By use of a 5-point Laplacian we obtain
a value of [S(M’/2)|*—[S(M’’/2)|?~0.559/A%. Again
these errors can be reduced by expanding the network
of points to compute the Laplacian.

The sliasing error is not explicitly apparent in the
spectral equations, but arises instead from the wave num-
ber limits representable in a finite mesh of grid points.
The highest wave number unambiguously representable
in the z-direction 1s m=w=/A, while higher valves than this
are misinterpreted as —w/A+4m. Thus the interactions
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symbolically represented in equations (2.8)—(2.11) include
not only those corresponding essentially to those of the
anralytic formulation but also a complete set of spurious
interactions involving reflections of one or both compon-
ents. Since these interactions can involve low as well as
high wave number components they could conceivably
cause serious distortion of the solution for cases in which
energy is dispersed throughout the resolvable modes.
Later, however, we see that their magnitude is typically
about equal to that of the derivative errors. Since the
spurious interactions occur in triads they do not alter the
quadratic conservation properties of Jy, Jp, and Js.

The conservation of spatially integrated kinetic energy
and squared vorticity in (2.1) is equivalent to constancy
of the corresponding sums of quadratic amplitude com-
ponents, i.e.

f f¢V2¢dxdyoc % IM |2PAmA-m=constant
ff (VR 2dadyoc %‘, |IM|*AmA-m=constant. (3.12)

The corresponding properties of the finite Jacobian lead
to one or both of the similar finite difference requirements:

2
SV acd % S(%)‘ AmA_m=constant
g 4
2 (V4)*c16 % 'SG\;)} AmA_m=constant. (3.13)
Y

The existence of these constant quadratic sums clearly
puts bounds on the magnitude of the stream function
and all of its finite derivatives either in grid or finite-
dimensional phase space. Somewhat more specific state-
ments can be made upon recognition that either of the
conditions of either (3.12) or (3.13) is sufficient to define
a Liapunov function, whose existence ensures Liapunov
stability about the phase-space origin of the corresponding
differential equations. A positive definite function V(z;)
of phase space components a; about an arbitrary origin
is defined (see, e.g. LaSalle and Lefschetz [12]) to be a
Liapunov function if:

(a) V(z;) is continuous together with its first partial
derivatives in a certain open region € about
the origin. '

{b) V(0)=0.

(¢) Outside the origin (and always in ©) V(z) is
positive.

(d) dV/di<0in Q.

The energy and squared vorticity functions of the ampli-
tude components Ay are positive definite since A_p is the
complex conjugate of Ay (because ¥ is real) and all the
other conditions are obviously satisfied including the
equality of (d).

4. LIMITED COMPONENT SYSTEMS

In several previous investigations of the behavior and
stability properties of meteorological equations it has
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been useful to consider systems of equations of a few
interacting phase components. Although all the im-
portant qualitative and quantitative properties of the
Arakawa difference schemes seem to be obtainable from
the general Fourier expansions, it is nevertheless interest-
ing to construct limited component systems for com-
parison with previously investigated examples.

Phillips [19] discovered a two-component (three co-
efficient) system whose interactions in J; are entirvely
self contained, that is, no new components are created.
All the interactions involve aliasing and are therefore
spurious, and the system would be steady state in an
analytic but truncated phase space formulation. Phillips
showed that these spurious interactions lead to uncon-
ditional computational instability. The components are
the following:

xL:(O cos ‘%l—{—S sin 7Ig—l—U cos 7ri> sin 2m) (4.1)

3

Applying J, to this system one obtains the following
coeflicient equations:

‘fi—f=alUS

%?: 0'1U0

v

W_O (4.2)

where

Lom L 2 L ,m L ,T
sin 5 sin —- sin® 5—sin® —

2”73 "3 1
247

V3
™ 1042
3

g1

. i .
sin? Z—{—smz

The solutions of (4.2) have exponentially growing parts
for any non-zero U and are therefore unstable. If first
and second derivative errors were eliminated (4.2) would
be unchanged in form but with ¢, increased by a factor
of about 5.

Upon substitution of (4.1) into J; the corresponding
coefficient equations became:

C%: 0'2US

%= ol C

%—Ut—v=—k2026ys (43)
where

oo=—T+/3/20A%
and -

ky= (5/7)2._
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The solutions of (4.3) are periodic in most cases, and may
be expressed in terms of Jacobian elliptic functions.
Asymptotic solutions exist for |C]=|S|, while for |C|,
[S|<<|U| the elliptic functions approach sinusoidal be-
havior. A similar behavior occurs in the energy conserv-
ing system ;, with coefficients o3=+/3/44% ky=5/7.
When the components are substituted in J,, however,
all interactions vanish and we obtain the trivial equations
dC/dt=dS/dt=dU/dt=0. In these cases also the first
and second derivative errors introduce only quantitative
effects (no effect in Ju).

It is evident that, although aliasing errors remain, the
type of instability demonstrated by Phillips is removed
by any of the quadratic conserving schemes. The
removal in J; and J; is effected by introduction of a third
spurious interaction which combines with the other two
to form a triad. In J4 the form of the interaction matrix
seems to forbid existence of any self-contained two-
component sets with non-vanishing interactions. None,
at any rate, has been found. Four-component sets exist
in abundance. Although their behavior is slightly more
complicated, it is of interest to examine one such set
closely related to Lorenz’ “maximum simplification”
equations. The motive for this is to see how the three
types of truncation errors, and especially the aliasing
error, affect a set in which real and spurious (aliasing)
interactions are both present.

Lorenz [15] performed time integrations on a three-
component set of Fourier components which he called the
“maximum simplification’” set. If we add one additional
component to this set, and specify the wave numbers, it
can be directly compared to a corresponding self-contained
finite difference set. The components used are:

; ://A—A cos ’ ¢B—B cos %]}

: Yo=C'sin = 5 sin %: Yp=D cos =i cos %] (4.4)

The analytic Jacobian leads to component equations as

follows:
aa_; A2[: BO—<3) OD]
.
G|~z Aan g () 47
wwl —u()a]

| At 3A
whilé J4 leads to the similar relations

dA 2?’;2[ 1 go— 3<2>OD]

(4.5)

MONTHLY WEATHER REVIEW

Vol. 93, No. 1
s [340]
s[5 4m4() ]
amwl @) e

The common factors to the left of the brackets in (4.5)
and (4.6) are affected by first derivative errors in the
latter, while the digital fractions inside parentheses are
affected by aliasing errors. All other terms are affected
by second derivative errors except for the first inside the
bracket in the dA/dt and dB/dt equations. By comparison
of the corresponding error magnitudes we see that first
derivative errors are, in general, largest, and the second
derivative and aliasing errors somewhat smaller. Thus it
appears that some improvement of accuracy could be
secured by using a third-order expression for the first
spatial derivatives as is now done in routine numerical
forecasting (Shuman and Vanderman [22]). Further re-
finements would be ineffective because of the remaining
aliasing errors.

5. ANALYTIC SOLUTIONS TO A FOUR-COMPONENT
SYSTEM

Although the essential elements of non-linear instability
are apparently removed by use of a quadratic-conserving
spatial differencing scheme, there remains the question of
stability related to time differencing. The usual centered
explicit mid-point rule is easily shown to be stable to
linear perturbations, if the time step is sufficiently small.
Experience indicates, nevertheless, that non-linear solu-
tions tend to become decoupled at adjacent time steps and
eventually lose all coherence and/or become catastrophi-
cally unstable. Since the truncated wave space systems of
(4.3) or (4.6) are exactly equivalent to spatial difference
equations applied to a particular form of initial condition,
an investigation of stability properties of these systems
should be pertinent to the more general problem. In
the following development we obtain analytic solutions to
the four-component system of (4.6). Similar solutions
can be found to (4.5) and to the two-component systems.

The kinetic energy and squared vorticity conservation
relations may be obtained from (4.6) in the form

E?=constant (5.1)

2 § 2 é 2 z 2__
A—|—2B+40+2D~—

Az_,_g Bz+_28é 02_;_% DP=Z7?=constant. (5.2)

Upon introduection of A?)/E and E as scale quantities we
obtain from (4.6) the dimensionless equations:

da bc~—l ed

(—15: — 3 (5.3&)
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o (5.3b)

de .
pra b+ ad (5.3¢)
Z_i: —-,li ac (5.3d)

§ 4 A2
where Ea=A, Eb=B, Ec=C, Ed=D, / E =t. The
scaled conservation relations now become:
2 § 2 é 2 z 2__

a+2b+4c+2d—1 (5.4a)

VA _
2—{- bz-l———- 2+ d2 22 ——E,z (5.4b)

To solve equations (5.3) we first note that (5.3b and d)
imply a linear relationship between b and d, i.e.,
d=(b,—b)/7 (5.5)

where b, is a constant. Upon substitution of (5.5) into
(5.4) and after some further algebra we obtain the

relations )
azz%) [P“’—(b—]—g—%) ] (5.6a)
e=r| @~ (-F2) ] (5.6b)
where
Pt Loy
Qb 1, 157,

13 " 13 26 26

We now introduce (5.6) into (5.3b) to obtain a single

integrable equation:
- ][(-3) -]

=ty ((or)
(5.8)

Certain substitutions described in Whittaker and Watson
[25] (chap. XXII), allow reduction of (5.8) into a standard
elliptic integral form with the solution for most cases
given in the standard Jacobian elliptic function notation

by:
5 g_3Tho
520 P4-Q+-2¢
., 37h,  VP+Q+2n dn(e, k) (5.9)
520
where

«:—2‘/13«%@ o) PLQ 120
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g (PO 2s> <P+Q+2n

P+Q—21) \P+@Q+2¢

i}"gg?wi\/m[ <260P+Q>]

It can be shown that the magnitudes of ¢ and 5 are less
than (P4-Q)/2 and therefore that kisreal. If the quantity
inside the square root in the expressions for £ and 5 is
negative, solutions may be written similarly but with
replaced everywhere by —@. Special solutions arise in
the following cases: *

P+ |b0] P=0 Q:O 1)=Q and b():O

(5.10)

260

The first of these special solutions is always sinusoidal,
the second and third constant, and the last is always ex-
ponentially damping. The solution for the last case, one
of particular interest here, is obtained by direct integra-
tion of (5.8) and is.

b=+ P tanh (‘”‘ 3 P0>=—7d

B (55 )2
la|= 51 sech( 51 Py =13 lel (5.11)
where o
=+/7/11
thus
|b]—+7/11, |d|—>+7/11/7, lal, |e|—0 as 9—>e.

It is easily shown that the asymptotic solutions lie along
four lines in the a, b, ¢ phase volume (d is not independent,
because of (5.4 a)). They thus constitute a set of measure
zero and have no probability of arising from initially
random choices of a, b, and c.

As indicated previously, solutions to (4.5), arising from
analytic spatial derivatives, are similar in form to the
above but with different numerical coefficients. Again
all are periodic with the exception of a single asymptotic
case. Somewhat simpler but closely related periodic and
asymptotic solutions also exist for two-component systems
like (4.3). The following investigations of the behavior of
solutions of the finite time difference equations analogous
to the four component system obtained from J, thus will
also be pertinent to the two-component systems like
(4.3) obtained by use of J, and J;.

6. FINITE TIME-DIFFERENCE SOLUTIONS

As shown in section 3, Fourier analysis of the original
partial differential equation (2.1), with the spatial
derivatives replaced by one of the quadratic-conserving
finite difference expressions, converts it into a closed set
of quadratic-conserving ordinary first-order differential

*Another special case, P= Q<% ]bo[ is not allowed because of limitations on the magni-

-tude of real variables imposed by (5.4 a).
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equations. Methods of numerical solution of such
equations are rather well developed, in contrast to the
case with the original partial differential equations. The
fourth order Runge-Kutta method, for example, combines
high accuracy, stability, and relatively straightforward
machine programming. It is not entirely clear why such
methods have been generally neglected in the time
differencing of the partial differential systems, but perhaps
the best reason 1s that time differencing errors have
previously been considered negligible compared to the
serious stability problems associated with non-linear
spatially differenced terms. With the introduction of the
quadratic-conserving schemes described above, time
differencing errors take on a new importance. Several
calculations performed using these schemes, including
those by Deardorff, Bryan, and Mintz and Arakawa (all
from personal communication), exhibited a slow instability
apparently associated with the time integration method.
An approach to understanding this instability is obtain-
able from consideration of a limited component system.
Much of the following analysis utilizes the terminology
and notation of Henrici [10).

Consider the following system of ordinary differential
equations for the dependent variables z, functions of t:

dzx;

?i't—zfi(wl; Tyy o v - t) (61)

where solutions are sought satisfying the initial conditions

z,(0)=n, (6.2)
Among the discrete variable methods for the solution of
such a set we can distinguish between one-step and
multi-step methods. In a one-step method the values
of z, at each time increment can be found if only the
values at the previous increment are known. In a multi-
step method the calculation of a new time increment of x;
requires knowledge of more than one of the previous
values. Another method of classification of methods is
by their order of accuracy. In a method of jth order
accuracy the Taylor series for the finite difference equation
is identical with (6.1) up to and including the term
multiplied by the jth power of the time increment. A
third classification distinguishes explicit from implicit
methods. In the latter the functions f; must be evaluated
at the new time step, generally by some iterative method.
Questions of computational stability for a given method
depend considerably on its position with respect te each
of these classifications.

Most meteorological and oceanographic calculations
have been performed with explicit methods of first or
second order accuracy. Implicit methods can be justified
in order to allow larger time steps in cases wherein a high
signal velocity is present in the differential equations but
is of no physical interest. There seems to be little point,
.however, in pursuing a higher order of time accuracy than
is present in the spatial derivatives for advectively con-
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ditioned flow patterns. Both single-step and multi-step
methods are in common use. In this section we investi-
gate the stability and accuracy of several of these methods,
listed in table 1, along with one method, that of Adams
and Bashforth, having certain advantages apparently
overlooked by most previous investigators. The theo-
retical results have been verified or illustrated by extended
integrations of equations (5.3a-d) for some of the meth-
ods listed.

Perhaps the most commonly used method in numerical
forecasting and related computations is the mid-point
rule, also known as the “step-over” (Richardson [20], p.
150) or “leapfrog” (Richtmyer {21]) method. For the
nitial step Euler’s method is commonly used although
more sophisticated methods have often been applied.
We now derive some results relating to the stability of
this method as applied to equations (6.1) for a single
variable z, with a linear complex function f specified as

=@+ (6.3)
where « and v are real constants. The analytic solution
of (6.1), (6.2), and (6.3) is exponential if »=0 and sinu-
soidal if 4=0. For the latter case, we can write the
solution of difference equation (2) in table 1 as follows:

x(n)znlein0+(_l)nnze—irw (64.)

where tan ¢ —vAt/[1— (vAt)2} and the superscript (1) refers
to the time level. The amplitude coefficients 7, and 7,
are obtained by use of Euler’s method for the initial time
step, and are

m=3{1+v1— @A) ]n, m=3{1—V1—(AL)*ln  (6.5)
The analytic solution is given by
r=ne'’ (6.6)

From comparison of (6.4) and (6.6) it is clear that the
second term of the former is the spurious solution intro-
duced by the difference approximation. It consists of a
single-time-step oscillation modulated by the period of
the real solution, and starts and remains with small
amplitude, provided [vAf|<<1. On the other hand, if
r=0 and 4<{0 the finite difference solution is

2 =n e~ (—1) e, tanh 9 =|u| At/ 1+ (uAt)?

m=[1+1+@A?)?)2, n=[1—V1+(wAt)’)/2  (6.6)
which is to be compared with the analytic solution
r=ne* 6.7)

Here we see that the spurious oscillatory part of the
solution, again associated with z,;, grows with time ex-
ponentially. This form of computational instability is
often associated with diffusion terms. Henrici terms it
weak instability and shows that it is essentially confined to
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TaBLeE 1.—Characteristics of methods of integrating first order spectral differential equations

Method Steps Order Formula Explicit or Amplification for
Implicit periodic solution
1 Eulero .o 1 1 | 2D =g () 4-fim AL (14-p2, 12
2. Mid-pointrule. ... o..._____... 2 2 | z (o)) =g (n~1) 4 2f(n) At 1
3. Euler’s modified..._____________ 1 2 | nt)) =g () [f(n) 47 (ntD) ] AL I 1
1 (n+1) * = (n) -fn) AL
4 Hean..._____._.________________ 1 2 E A-pH4ys
Tt =g () 3 [f(m) ff(ntD) *] AL
z(nt1) k=g (n) -f (n) At
5. MatSuno. ..o ccoooeoie e 1 1 { E (Ll=~p24-pYh1/2
(D) =g () ff(nHD) *Af
(B+1)x (1) =381 (0) 4 (3 —3B)z (n=1) B (n=2) - f(n) AL
6. Miyakoda. . ... 3 2 E (HBpit .. )3
>0
7. Adams-Bashforth________.__.____ 2 2 | gt =g () [3f(n) —Lfin-D]AL E Q4p4a4". o )
l-'("ﬂ) =1‘(n) +/'_(n) At-kfzf")
8. Lax-Wendroff._____.___________. 2 2 E [1—4p2(2k = k) +4piis
() =z (™ orinth ap

a class of multi-step difference methods which allow more
than one solution to the equation dz/di=0. Neither the
single-step methods nor the Adams-Bashforth or Adams-
Moulton (implicit) multi-step methods exhibit this form
of instability.

These results can be applied to non-linear equations
like (5.3) when we recognize that the elliptic integral
functions, although generally periodic, partake of the
nature of both sinusoidal and exponential forms, as can
be seen by examining the first and last of the limiting
forms of (5.10). For the latter of these, one may linearize
the finite difference equations and find perturbation
solutions which are unstable for integrations made by
the mid-point rule. It may be expected, therefore, that
initial conditions chosen to be close to those of the limiting
asymptotic case will lead to instability of the weak
time-splitting type. To test this assumption, numerical
solutions of (5.3) were obtained using the Euler method
for the first step and the mid-point rule for 999 subse-
quent time increments, or until instability ensued. The
following three sets of initial conditions were used:

(1) 6=0.7664163, b=0.14, ¢=0.5526707, d=—0.02
(2) @=0.7669696, b=0.14, ¢=0.5530697, d=0.0
(3) a=0.5, b=1/4/6, c=1/4/5, d=1/y/14

The first of these corresponds to the asymptotic solution
and the second to a small perturbation from it. The
third was chosen to have energy uniformly dispersed
among all components.

Figures 1, 2, and 3 are time plots of these solutions for
the variables @, b, ¢, and d at odd and even time steps.
The time interval is 0.2 non-dimensional unit. All
the solutions correspond very accurately to their analytic
counterparts as long as the time splitting is small. The
curves for case (1) and (2) are almost indistinguishable
up to the point where the former becomes unstable,
but the latter then becomes periodic with a period agreeing
to within about 1 percent of the analytic prediction.

Noticeable splitting occurs periodically as the integration
proceeds, and after about 800 time steps the system has
reached a point of incipient instability. Figures 4 and
5 show the kinetic energy for odd and even time steps
of cases (1) and (2), integrated by the mid-point rule,
and case (1) integrated by other schemes to be described.
Time-step splitting obviously occurs and amplifies con-
siderably before the average noticeably deviates from
unity. In case (3) the oscillations have become shorter
and simpler, although far from sinusoidal, and are pre-
dictable to an accuracy of 0.5 percent. The splitting
here has an amplitude of about 1 percent, too small
to plot, and is completely innocuous to at least 1000
time steps. The kinetic energy (not plotted) is essentially
constant. This behavior would presumably characterize
solutions for the majority of initial conditons chosen
at random from all possible values.

Table 1 presents some pertinent details on the remaining
methods investigated. Most of the methods, when
applied to integration of the equation du/dt=1vz, yield
complex exponential solutions. Column 6 shows the
amplification factor associated with the real part of this
complex exponent, where p=vAt.

Euler’s method and the mid-point rule have already
been discussed. It has long been known that Euler’s
method leads to slow amplification of oscillating solutions
as well as significant phase errors. Kuler’'s modified
method, the best known implicit method, is rather ideal
in several respects, as it is the only one of those discussed
here in which the conservation relations (5.4a, b) hold
exactly. Veronis [24] has recently used it for integration
of spectral component equations. The Heun method,
used by Lorenz [16] and others, is a single-step method
which may be considered a first iterative approximation
to Euler’s modified method. Table 1 shows that periodic
solutions amplify, but only by a fourth-order term.
Lorenz has shown a similar result for general systems of
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Ficure 1.—Case 1, asymptotic solution for the dimensionless
amplitude coefficients a, b, ¢, and d, integrated from equation
(5.3) by the mid-point rule with time interval 0.2 dimension-
less units. The light and heavy curves connect values for
odd and even numbered time steps, respectively, after the
initial single uncentered step.

conservation equations. Another single-step method pro-
posed by Matsuno (unpublished) and used by Mintz
and Arakawa [17] is essentially the first approximation
to a first-order backward difference scheme. The amplifi-
cation factor, like that of Euler’s method, differs from
unity in a second-order term, but tends to damp all
oscillations except the shortest. Equations (5.3) were
numerically integrated by this method for the conditions
of case (1) which led to instability with the mid-point
rule. The kinetic energy, plotted in figure 4, shows
clearly the effect of this damping. 'The step-like appear-
ance of this cucve is associated with the slowly oscillatory
nature of the numerical solution. This oscillation is
itself a truncation error effect, since the analytic solution
is asymptotic. It occurs, however, in all the numerical
solutions obtained, and is clearly related to the singular
nature of the asymptotic case.

Miyakoda [18] (p. 133) suggested use of a three-step
method which is essentially redundant, since it is only
of second-order accuracy. The redundancy is applied
to elimination of weak instability and is most effective
when the coefficient 8 is at or near I;, the value giving
optimal damping of the two spurious computational
modes. Truncation error increases with 8, as does the
amplification of the periodic solution shown in column 6
of table 1. For =0 the method reduces to the mid-
point rule. Numerical integrations were performed for
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the optimal value of 8 and for 8=, the value suggested
by Miyakoda, and results for the kinetic energy are
plotted, in an expanded scale, on figure 5. There is
obviously some oscillation, in phase with an observed
oscillation of the basic solution components, but the
overall trend is virtually undetectable even after 1000
time steps. KEssentially similar results appear for the
Adams-Bashforth method, also presented on figure 5.
A slight trend toward increasing energy is detectable here,
as could be expected from the somewhat larger amplifi-
cation factor compared to Miyakoda’s method. This
method is somewhat simpler than Miyakoda’s and more
efficient than Heun’s. It has not, to my knowledge,
been previously used in numerical forecasting.

The scheme proposed by Lax and Wendroff [13] is of a
slightly different nature than those considered above,
as it was originally designed for application to partial
differential equations.

The principal identifying feature of the scheme seems
to be in the time differencing, however. Elsewhere in
this issue Kasahara [11] and Fischer [7] discuss the stability
of difference schemes closely related to that of Lax and
Wendroff but differing somewhat in the space-time lattice
structure. Here we consider the Lax-Wendroff scheme
applied to equation (2.1), but modified by use of the
Arakawa spatial Jacobian Js. As shown by Richtmyer
[21] the scheme may be written as a two-step process-as-
follows

g‘(n-}—l):g-(n)_*_%z W2§'(")—J§1") <At

(n+2) — #0)
§ ={

—2J @ - At- (6.8)

The five-point Laplacian operator appearing in the first
step arises because of the spatial averaging employed by
Lax and Wendroff, and seems to be an essential feature
of the system, although in Kasahara’s schemes it appears
to have a coefficient only one-half as large. Upon appli-
cation of the Fourier transform to (6.8) the system defined
in column 4 of table 1 is obtained, where the £/’s are sines
of wave numbers. Except for the pseudo-viscous damp-
ing caused by the Laplacian term this scheme is similar
in nature and accuracy to the Heun method and is known
in the literature as the “improved polygon’’ method
(Henrici [10], Collatz [4]). The presence of the damping
terms, however, causes extremely large errors in the treat-
ment of hich wave number components.

The results of the numerical integration of (5.3) by this
modified Lax-Wendroff method are, therefore, essentially
nonsense, as can be seen by viewing the energy curve in
figure 4. While this may not be an entirely fair manner
of evaluation, it does show that high wave numbers are
handled with effectively no accuracy by this method.
One may of course argue, from the previous analysis of
truncation errors of equation (4.6), that there is very
little accuracy in the high wave number results for any



January 1965

Douglas K. Lilly 21

o 1.0 1 ] 1 | 1 | ]
S
o
-
9]
wl
J
1]
<
%
>
—0.2-
9]
& —0.4+
-
Z —0.64
5 0.6
N —0.84
UZJ 0.8
s —1.0 T T T T T I T
a 0 10 20 30 40
DIMENSIONLESS TIME, UNITS OF AY/E
Fiqure 2.—Case 2, perturbation from asymptotic solution. See figure 1 caption for other details.
e} 1.0 1 | 1 | 1 ] 1
i
a 0.84 -
5
(79}
wl
J
m
<
14
<
>
()]
n
5]
-
Z
0 _0.84
> 0.8 L
wl
s —1.0 T T T T T I T
a) 0 10 20 30 40

DIMENSIONLESS TIME, UNITS Of Az/E

Freure 3.—Case 3, uniform energy dispersion. See figure 1 caption for cther details.

second-order method. It should also be noted that the
modified Lax-Wendroff schemes discussed elsewhere in
this issue by Kasahara [11] and Fischer [7] are substantially
better in this respect because of the time-space grid
staggering of variables. The finite Laplacian operator
in (6.8) would then be replaced by a similar expression
taken over one-half of a grid interval and the damping
effects would be considerably less.

7. CONCLUSIONS AND OUTLOOK

By expressing the stream function in a finite Fourier
series we have derived the spectral interaction matrices
corresponding to the finite difference Jacobian forms
previously obtained by Arakawa [1] and Fromm [8].
Comparison of the interaction coefficients with those of
the analytic Jacobian showed that the truncation errors
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separation between odd and even numbered time steps shows the development of instability in the mid-point rule calculations.

are of three types, only two of which are reducible by
higher order differencing. The third type, the aliasing
error, is present in all of the Jacobian forms considered
but does not lead to computational instability in any of
the quadratic-conserving forms because of the balancing
of spurious interactions in triads. Specific examples of
truncated spectral systems were considered to illustrate
this effect and to compare the behavior of the various
quadratic-conserving formulations.

The remaining factor leading to possible computational
instability in a simple non-linear vorticity equation, the
time differencing, was investigated by comparison of
analytic and numerical solutions of a four-component
finite-difference spectral equation system. From theoret-
ical consideration and integration of a limited number of
cases it appeared that the mid-point rule usually applied
in meteorological calculations is unstable for certain
rather special sets of initial conditions. Instability, when
it occurs, is of the nature of an amplifying single-time-

step oscillation. Several alternate methods of stabilizing
the calculations were tested analytically or experimentally.
All exhibited improved stability, and three, the Heun,
Miyakoda, and the simple and rather efficient Adams-
Bashforth method seemed to have acceptable, and roughly
equal, accuracy.

In most practical or theoretical initial value problems
to which numerical methods are applied, the equations,
variables, coordinates, and/or boundary conditions ex-
hibit greater complexities than are in (2.1). Each prob-
lem must be considered on its own terms, and it is not
implied that use of a quadratic-conserving Jacobian plus
stable second-order accuracy time differencing will solve
all stability problems. These systems can, however, be
generalized to cover a considerable range of variation of
the systems of equations, boundary conditions, and
mapping factors. As an example, a 9-level general
circulation model now being used by Smagorinsky and
Manabe of the Weather Bureau’s General Fluid Dynamics



January 1965 Douglas K. Lilly 23
1.05 1 1 1 1 1 i
< 1,044 -
W MIDPOINT RULE
< /
- 1.031 -
Z
)
N
~ < 1.021 -
Y] :
>.
TN
x Ww
ui =
Z uw
W o ADAMS - BASHFORTH ~s-_
 n ; <
kB MIYAKODA B8 = = ~s 4
= T N
z 35 MIYAKODA 8 = & -~
X
.99 "
w
5]
&
5 .98 -
<
.97 T T T T T I 1
0 10 20 30 40
DIMENSIONLESS TIME, UNITS OF AYE

F16URE 5.—Dimensionless normalized energy, plotted on a more open scale.

Values for odd and even time steps are joined to show the

contrast between the mid-point rule and the more stable methods.

Laboratory has been recently reformulated to incorporate
these methods.

APPENDIX

A Systematic Derivation of the Quadratic-Conserving Finite
Representations of the Jacobian

Let ¥ and ¢ be dependent variables represented at the
points z=mA, y=nA. We introduce the shorthand
notation

We now denote by J,., a finite sum of product terms,
whose factors are chosen from a 9-point box surrounding
the point z, y.

1 1

> 20 20 Cpi¥mti ntilmaknt

1 1
=23 (A2)
[ e S e R !
where a;;;;is one of 81 components of a fourth order tensor.
We require that a,;;; be specified to satisfy certain proper-
ties of the analytic Jacobian, J(¥, {).
If the z and y axes are rotated by a multiple of 7/2 the
analytic Jacobian is unchanged, while its sign is reversed
T55-584—65—4

if x is replaced by —z or y by —y. These requirements of
rotational symmetry and reflective anti-symmetry lead to
the coeflicient relations

(A3)
(A4)

Qijpt=Xj— 11— =i —f— 1= Q_ji — 1k
Qijpy=—CQ— 5 1=~ Qj—j 1 =C—j—f —g—1-

The above relations lead to vanishing of 33 of the coeffi-
cients, e.g., Gyn==0a-11_.1=—a-n_1=0. Of the remaining
48 only 6 are independent. For simplicity we renumber
these @, to a; as follows:

Ay =001 = Ao1—10= @—100~1 = A0o—-110
= —190-1= —Ao110= — @—100 = — o-1-10
A= A1011= o111 = A—10-11 = Lo-11-1
=—0101-1= —Qoin= — A-10-11= —Up_1-1-1
A3=A1101=A-11-10=A—1-10-1=F1-110
=—n10="—0_nn=—C&-1-1-10= A1 -10-1
Ay=01—11=0p1-1-1=A_101-1= Tp—111
= —1p-1-1= —Qo11-1= — A—101-1= — Qo111
G;=01_1n1=0.11-1-1—@_1-11-1= 1111
=—q 1= 0= —"C11-n=—0_1-1-1
A==y 10=A-110-1 = &1 _1130—= F1-101
= —019-1= —0Q_mi0= —G-1-101= — d1-1-10-

(A5)
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In order that J,, be a second order approximation to J we
expand ¢ and ¢ in a Taylor’s series around z=mA, y=nA4,
Le.:

Yot s = ¢mn+A< 7 ag;>
- iza;i'gn i S (A9)

st nt1=EmntA ( of frn asW)
+31 (’czaf’””Jrklg‘;”;Jrz?afm")Jr - (A7)

Upon substitution of (A6) and (A7) into (2.1) and equating
coefficients of the derivatives, a new relation is obtained,
which may be defined as the second order accuracy
criterion:

1+ a3+ 205 +ag=0 (AS)

We now apply the linear and quadratic conservation
requirements. These may be stated as the reduction of
area integrals to line integrals around a boundary. For
conservation of vorticity, kinetic energy, and squared
vorticity, this means that the summations

S T B2 ey, 2

n=-1 m=-1

g‘anmn

1 1
n=—1 m=—1 n=—1 m=—

must include, respectively, no contributions from the m,
7 point.

Figure 6 is a schematic diagram intended to illustrate
some of the interaction coefficient properties. The axes are
in the z and y directions with the origin at the point x=mA,
y=nA. The solid arrows represent interaction coefficients
connecting vorticity, ¢, at the arrowhead and stream
function, ¢, at the tail, e.g., a,=a;001, @3=0a1101, 6tc. The
dashed line arrows represent the same coeflicients acting
on variables displaced one or two grid intervals in the
vertical and/or horizontal, but they are labeled according
to their value in the grid centered at m, n. 'The vorticity
conservation condition requires that the sum of the co-
efficients associated with parallel equal length arrows
running in the same direction must vanish. For most of
those appearing in figure 6 this is already the case, e.g.,
a,—a; =0, a;—a,}-a;—a;=0, in which it may be noted
that all interactions involving the origin were made to
vanish by the symmetry conditions in (A3) and (A4).
The only new relation arising from this condition arises
from equating the two sets of long diagonal interaction
arrows, i.e.

Ay=0g (A9)

In order to derive the quadratic conservation properties,
we represent triad interactions by a triangle, with one
vertex at the center and the opposite side given by the
interaction coefficient arrow. Thus the kinetic energy
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Ficure 6.—Interaction coefficient diagram. The open circles
are grid points from which stream function and vorticity
contribute to the Jacobian evaluated at the origin (solid
circle). The arrows represent interaction coefficients con-
necting stream function at the tail and vorticity at the head,
labeled according to (A5). The solid arrows all start in the
upper right quadrant while the dashed ones are all parallel
and congruent to them.

triad @o-11¥mnt1m-1nt1¥mn, Obtained from multiplication of
Jn DY ¥mn, 1s represented by the upper triangle in figure 7,
while the triad @o-;—10¥ma—1{m—12¥m» similarly forms the
lower triangle. No other triangles may be formed within
the 2A square which are congruent, parallel, and whose
corners represent the same variables (¢ or ). Thus the
sum of these paired interaction coefficients must vanish,
1.e., @u-n—ay—1—10=0, In order that kinetic energy be
conserved within the square. Other triangles may be
formed using the other interaction arrows represented by
figure 6. Most of these have no pairings, and the inter-
action coefficients must therefore wvanish. The result,
for the energy conservation requirement, is that:

ay, =das, 0/4:(1/5:(16:0 (AlO)
while similar pairings for the product of J,, and (.,
yield the relations

a;=ag, Gy=a;=as=0, (A11)
Upon application of the second-order accuracy require-
ment, (AS8), one degree of freedom is removed from each
of the above and we obtain the formulas



January 1965

A

¢ a;=380)-13
L Sy
d
X—
14 3
A
Y
Ty
N A
Ficure 7.—Energy conservation interaction diagram. The

hatched triangles represent the interaction products of two
stream funetions and one vorticity value at their vertices.

1
a1=a2=§——%§, a4:a5:a620 (AIZ)
for kinetic energy conservation, and
1 a
a/1=az3=§———2—2, a4=a5=a5=0 (A13)

for squared vorticity conservation. KEach of these has
one arbitrary coefficient; thus it is possible to satisfy both
with the unique system

h=a=a;=1/12, ¢y=a;=a;=0. (A14)

The difference schemes described in the text are obtained
from special choices of the arbitrary coefficients. J; is
the vorticity conserving scheme corresponding to a,=1/4,
while J; is obtained from a,=1/4, and J; from a;=1/4, all
other coefficients vanishing. The combined system J is
obtained from (A14). As stated in the text, any linear
combination of J, with J;, J;, or J; preserves the latter’s
properties. For example 3J,/2—J3/2=(J;1+J,)/2, cor-
responding to a,=a,=1/8, which satisfies (A12) just as
does J;.
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